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Abstract

Total synthesis of (—)-mniopetal E, the common skeleton of the biologically intriguing mniopetals A-D, was
accomplished for the first time. The key step of the total synthesis was stereoselective intramolecular Diels—Alder
reaction for construction of the octahydronaphthalene core structure. Our total synthesis as natural enantiomeric
form established the unsettled absolute stereochemistry of the antibiotic. © 1999 Elsevier Science Ltd. All rights
reserved.
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Mniopetals A-E (1-5) are novel drimane-type sesquiterpenoids, which were isolated from the fer-
mentation broth of Mniopetalum sp. 87256.! These natural products show inhibitory activity against
RNA-directed DNA-polymerases (RT) of human immunodeficiency virus (HIV)-1 and moloney murine
leukemia viruses.! In addition, they exhibit antimicrobial and cytotoxic properties to some extent.! Their
structures, highly oxygenated octahydronaphthalenes, were elucidated by a combination of chemical and
spectroscopic methods (Fig. 1)2. Their absolute stereochemistries were proposed as depicted based on
the correlation with the stereochemically defined 1¢,15-dihydroxymarasmene (6)>* isolated from the
same fungus. In this communication, we report the first total synthesis of mniopetal E (5), which is the
common structure of all the mniopetal family.

In our previous paper,® the intermediate 8 derived from a D-ribitol derivative 7 was converted to the
substrate 9 for the key intramolecular Diels—Alder (IMDA) reaction,® in which a y-butenolide part was
installed as a dienophile (Scheme 1). The IMDA reaction of 9 proceeded under thermal conditions
to provide two endo-adducts 10 (54%) and 11 (22%) with preferential formation of the desired 10.
Unfortunately, we could not find any efficient synthetic route from 10 to mniopetal E 5).7

We prepared another substrate 15 for the IMDA reaction as illustrated in Scheme 2. The ester 8 was
converted to unsaturated aldehyde 128 by a reduction-oxidation procedure. Protection of the aldehyde
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Scheme 1.

group in 12 as the 1,3-dithiolane and hydrolysis of the ketal provided diol 13. Introduction of a y-
butenolide moiety was achieved using the previously established strategy.’ Thus, 13 was converted
to the &-bromoacetylmethyl ketone 14, which was treated with trimethylphosphite. The resulting -
phosphonoacetate was subjected to an intramolecular Horner—-Emmons reaction providing 15 in an
overall yield of 35% from 13. The IMDA reaction of 15 proceeded in toluene (0.03 M solution) at 180°C
for 21 h. As a result, two endo-adducts 16 and 17 were obtained in 45% and 18% yields, respectively.
The stereochemical assignment of 16 and 17 as depicted was conducted based on their 'H NMR spectral
analysis including NOE experiments. We consider that the same transition state argument as described
in the case of 9° can be adopted for explanation of the present stereochemical outcome.
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Scheme 2. Reagents and conditions: (a) DIBAL-H, CH,Cl,, -78°C; (b) MnQ,, CH,Cl,; (c) HS(CH,),SH, BF;-Et,0, CH,Cl,,
-18°C; (d) AcOH:H,O:THF (3:1:1) (90% from 8); (e) CIC(O)CH,Br, y-collidine, CH,Cl,, =78°C; (f) DMSO, TFAA, Et;N,
CH,Cl,, -50°C; (g) P(OMe); (neat), 90°C; (h) LiCl, DIPEA, MeCN (35% from 13)
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The transformation of the major adduct 16 into mniopetal E (5) was depicted in Scheme 3. All attempts
to convert the y-butyrolactone moiety in 16 directly to a succinic anhydride or a y-hydroxy-y-lactone
structure failed. Thus, the dithiolane part in 16 was temporarily converted to the dimethyl acetal group.’
The y-lactone ring in the resulting acetal 18 was hydrolyzed to afford the ring opened carboxylic acid,
in which the primary hydroxyl group was oxidized to an aldehyde isolating as a diastereomeric mixture
19 of the y-hydroxy-y-lactones. Reduction of 19 with DIBAL-H provided 20. Treatment of 20 with HC]
gave tetracyclic methyl acetal 21. The hemiacetal moiety of 21 was then oxidized to lactone 22!'° and
successive treatment with HCl finally provided (—)-mniopetal E (5)!° as a consequence of hydrolysis of
the protecting groups and double bond migration. The spectroscopic data of the synthetic 5 were well
matched with those of natural 5. The optical rotation of the synthetic § [[0(]12)7 -58 (¢ 0.18, CHCl3) for
synthetic, [0(]12)() —-57 (¢ 0.10, CHCI») for natural] established the absolute stereochemistry of natural 5 as
depicted.
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Scheme 3. Reagents and conditions: (i) Hg(ClO,), -3H,0, MeOH:CHCI; (3:1) (86%); (j) 1.0 M KOHagq, +-BuOH, 50°C; (k)
Na,RuO;, 1.0 M NaOHagq (95%); (1) DIBAL-H, CH,Cl,, -78°C (67%, 30% recovery of 19); (m) 1.0 M HClaq, THF, 30 min
(58%); (n) DMSO, Ac,0 (72%); (0) 6.0 M HClaq, THF, 50°C, 18 h (43%)
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